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Numerical calculations are presented for the steady three-dimensional structure of 
thermal convection of a fluid with strongly temperature-dependent viscosity in a 
bottom-heated rectangular box. Viscosity is assumed to depend on temperature T as 
exp ( --ET), where E is a constant ; viscosity variations across the box r (= exp ( E ) )  as 
large as lo5 are considered. A stagnant layer or lid of highly viscous fluid develops 
in the uppermost coldest part of the top cold thermal boundary layer when r > rcl, 
where r = rcl = 1.18 x 103R,0~308 andR, is the Rayleigh number based on the viscosity 
at the top boundary. Three-dimensional convection occurs in a rectangular pattern 
beneath this stagnant lid. The planform consists of hot upwelling plumes at or near 
the centre of a rectangle, sheets of cold sinking fluid on the four sides, and cold 
sinking plume concentrations immersed in the sheets. A stagnant lid does not 
develop, i.e. convection involves all of the fluid in the box when r < rcl. The whole- 
layer mode of convection occurs in a three-dimensional bimodal pattern when r > 
rc2 = 3.84 x 106R;1.36. The planform of the convection is rectangular with the coldest 
parts of the sinking fluid and the hottest part of the upwelling fluid occurring as 
plumes at  the four corners and at the centre of the rectangle, respectively. Both hot 
uprising plumes and cold sinking plumes have sheet-like extensions, which become 
more well-developed as r increases. The whole-layer mode of convection occurs as 
two-dimensional rolls when r < min (rcl, rc2) .  The Nusselt number Nu depends on the 
viscosity at the top surface more strongly in the regime of whole-layer convection 
than in the regime of stagnant-lid convection. In  the whole-layer convective regime, 
Nu depends more strongly on the viscosity at  the top surface than on the viscosity 
at the bottom boundary. 

1. Introduction 
One of the most important characteristics of subsolidus convection in the mantles 

of terrestrial planets is the strong temperature-dependence of the rheology 
(Weertman 1970). Here, we study how this strong rheological temperature- 
dependence could affect the nature of mantle convection by numerically modelling 
the three-dimensional thermal convection of an infinite Prandtl number Boussinesq 
fluid with exponentially temperature-dependent viscosity in a rectangular box. 
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Several workers have carried out two-dimensional numerical simulations of 
thermal convection of infinite Prandtl number, strongly temperature-dependent 
viscosity fluids (for a review and literature summary, see Hager & Gurnis 1987). 
These studies have clarified how the strong temperature-dependence of viscosity 
affects the efficiency of convective heat transport (e.g. Christensen 1 9 8 4 ~ ) .  An 
important feature of two-dimensional convection with strongly temperature- 
dependent viscosity is the occurrence of a lithosphere or layer of low-temperature, 
high-viscosity fluid in the uppermost coldest part of the top cold thermal boundary 
layer (e.g. Parmentier & Turcotte 1978; Christensen 1984b). Of course, it is beyond 
the scope of two-dimensional numerical simulations to address the problem of how 
the strong temperature-dependence of viscosity modifies the three-dimensional flow 
pattern of mantle convection. 

Three-dimensional convection of fluids with temperature-dependent viscosity has 
been studied by laboratory experiments (e.g. Richter 1978; White 1988). These 
investigations have identified roll and bimodal patterns of convection for fluids with 
mildly temperature-dependent viscosity and hexagonal, square, and spoke patterns 
of convection with hot upwelling cylindrical plumes and cold downwelling sheets for 
fluids with strongly temperature-dependent viscosity. However, in laboratory 
experiments, it is difficult to examine these three-dimensional flow patterns in detail. 
Numerical experiments facilitate such detailed examinations of complex three- 
dimensional convective flow patterns. 

Three-dimensional numerical calculations have been carried out for thermal 
convection of a constant viscosity fluid in a rectangular box (Cserepes, Rabinowicz 
& Rosemberg-Borot 1988; Houseman 1988; Travis, Olson & Schubert 1990a; Travis, 
Weinstein & Olson 19906) and in a spherical shell (Baumgardner 1985; Zebib, Goyal 
& Schubert 1985; Machetel, Rabinowicz & Bernardet 1986; Glatzmaier 1988; 
Bercovici, Schubert & Glatzmaier 1989a, b ;  Bercovici et al. 1989c) as well as for 
thermal convection of a mildly temperature-dependent viscosity fluid in a 
rectangular box (up to lo2 in the ratio of largest to smallest viscosity) (Christensen 
& Harder 1991). These studies have identified the main features of three-dimensional 
convection to be cylindrical-like upwelling plumes and sheet-like downwelling 
structures. No one, however, has succeeded in calculating thermal convection of a 
strongly temperature-dependent viscosity fluid with the ratio of largest to smallest 
viscosity greater than lo2. In this paper, we investigate how a strong variation of 
viscosity with temperature, up to a factor of lo5 in the ratio of largest to smallest 
viscosity, influences this style of three-dimensional convection. 

2. Basic equations, numerical method, and model description 
We consider the thermal convection of an infinite Prandtl number fluid with a 

strongly temperature-dependent viscosity in a three-dimensional rectangular box 
heated from the bottom. The aspect ratios of the box a, and ay (width over height 
in thc x- and y-directions, respectively) are assumed to be 1.7 and 0.5, respectively, 
in most of our calculations; the coordinat#e axes are parallel to the sides of the 
rectangular box with the z-axis vertical (positive upward) and the origin at a bottom 
corner of the box. We carried out a few calculations with the aspect ratios a, = 3 and 
ay = 1.5 to see how the flow pattern depends on aspect ratio. The non-dimensional 
forms of the energy, momentum, and continuity equations are, respectively. 

a, T + t( . VT = V Z T ,  (1)  
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- V p +  R, Te, + V -  [ ~ ( V U  + W u ) ]  = 0, 

v - u  = 0, 

where superscript t means transpose, u is fluid velocity, p is pressure, T is 
temperature, 9 is viscosity (assumed to be a function of temperature), e, is a vertical 
unit vector, and R, is the Rayleigh number defined by 

R, = agh3po ST/vo K .  (4) 

In (4), po is the density at T = 0,  qo is a dimensional reference viscosity, g is the 
acceleration due to gravity, K is thermal diffusivity, h is the height of the box, ST is 
the temperature difference between the top and bottom surfaces of the box (see below 
for the thermal boundary conditions at the top and bottom), and a is thermal 
expansivity. All quantities on the right-hand side of (4) are dimensional. In (1)-(3), 
length is normalized with h, temperature is normalized with ST, and time is 
normalized with the thermal diffusion time h2/K. Non-dimensional viscosity 3 is 

( 5 )  
assumed to depend on T as 

where E is a constant. The reference dimensional viscosity 7,~~ is taken to be the 
viscosity at T = 0. 

The boundary conditions a t  the vertical sidewalls are assumed to be reflection 
conditions 

= exp ( -ET),  

(6) 

neu = 0, (7)  

n -  VT = 0, (8) 

n-Vu,  = 0, 

where n is the normal vector and ut is the tangential component of fluid velocity. The 
top ( z  = 1)  and bottom ( z  = 0) boundaries are isothermal surfaces 

T = O  a t z = l ,  

T = l  a t z = O .  

The top and bottom surfaces are also impermeable and shear stress free 

n . u = O  a t z = 0 , 1 ,  

a,u, = 0 a t  z = 0 , l .  

In the following, we discuss the results in terms of R, defined by (4) and r defined by 

r = exp ( E ) .  (13) 

The Rayleigh number R, is defined with the viscosity at the top boundary where 
T = 0 and r is the viscosity ratio between the top and bottom boundaries (T = 1 a t  the 
bottom surface). It will also be convenient to introduce R,, the Rayleigh number 
based on the viscosity at  the temperature of the bottom boundary 

R, = rR,. (14) 

The basic equations (1)-(3) are discretized using a backward finite-difference 
method in time and a finite-volume method in space (Patankar 1980). The mesh is 
taken to be non-uniform with finer resolution near the boundaries to resolve thermal 
boundary layers and plumes; mesh intervals vary in a geometric ratio with the ratio 
1.06 in the x- and y-directions and 1.07 in the z-direction. The minimum mesh 
intervals (ax, Sy, S Z ) , ~ ~  and the number of mesh points (mx,  my,  m,) are given in table 
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Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 

15 
16 

17 
18 
19 
20 
21 
22 

23 
24 

Mode of 
R, R b  r IC calculation 

(m,,m,,m,) = (24,14,22), 
a, = 1.7, a, = 0.5 

(6x,6y,6z),,, = (5,3,3.2) x lo-' 

105 105 1 hyd std 
3.2x 104 105 3.2 1 std 

104 105 10 2 std 
103 105 lo2 3 std 
3.2 102 105 3.2 x lo2 4 std 

32 105 3.2 x 103 5 std 
32 105 3.2 x 103 10 std 
103 3.2 x lo5 3.2 x lo2 4 std 
103 3.2 x lo5 3.2 x lo2 10 std 
103 1 os 103 8 std 
103 1 O8 103 10 tm 
3.2 102 1.5 x 106 4.7 x 103 5 std 
3.2 x 10' 1.5 x lo6 4.7 x lo3 rnd std 

(&, b'y, &),,, = (5,3,2.1) x lo-' 

103 3.2 x lo6 3.2 x lo3 10 tm 
(m,,m,,m,) = (24,14,24), 

(mz, m,, m,) = (44, 18,30), (Sx,Sy,&),,, = (1.7,2.1,1.7) x 

103 5 x  lo6 5 x 103 14 std 
103 3.2 x lo6 3.2 x lo3 14 std 

(m, ,m, ,m,)=  (44,18,30), (S~,Sy,Sz) , , ,=(1.7,2.1,1.3)~10-~ 

102 3.2 x lo6 3.2 x lo4 16 std 
32 3.2 x lo8 lo6 17 std 
32 1 O6 3.2 x 104 18 std 
10 3.2 x 105 3.2 x 1 0 4  19 std 
3 . 2 ~  10' 3 . 2 ~  los lo4 17 std 
3 . 2 ~  lo2 3 . 2 ~  lo6 lo4 12 std 

U, = 3, uy = 1.5 
(m,,m,, m,) = (68,30,22), (ax, Sy, &),,, = (3.5,3.5,3.2) x lo-' 

103 lo6 103 hx std 
32 lo6 3.2 x 104 23 std 

Nu 

9.72 
7.41 
6.26 
4.13 
3.08 
1.54 
1.54 
4.47 
4.47 
4.96 
4.96 
3.88 
3.77 

5.47 

5.55 
5.37 

3.61 
3.17 
2.56 
1.78 
4.31 
4.05 

4.95 
2.59 

TABLE 1. Input parameter values and values of the Kusselt number. IC means initial conditions, 
hyd refers to the state given by (15) and (16), rnd refers to the state given by (15) and temperature 
perturbations in the form of random noise, hx indicates the hexagonal pattern shown in figure 14, 
and std and t m  indicate steady state and time marching calculations, respectively. The numbers 
under the IC column refer to the case adopted as the initial state. 

1. The discretized equations are solved by the SIMPLER algorithm (Patankar 1980); 
temperature T and the primitive variables p and u are treated as unknowns and 
iteratively determined line by line. Special care is taken in the calculation of viscosity 
to  avoid possible numerical instabilities owing to  the strong temperature-dependence 
of viscosity (see Appendix A). When the purpose is to obtain a steady state solution, 
the timestep is taken to be 1O'O and time marching is done in only one step. Under- 
relaxation is employed with a relaxation constant of 0.1 for the momentum and 
continuity equations and a relaxation constant of 0.3 for the energy equation. The 
iteration procedure is concluded when the difference between the horizontally 
averaged heat flow between the top and bottom boundaries becomes smaller than 
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FIGURE 1 .  A regime diagram of convective flow patterns in the plane R, (Rayleigh number defined 
with the viscosity at the top) us. r (viscosity ratio between the top surface and the bottom 
boundary) for the case a, = 1.7 and ay = 0.5. a, Three-dimensional stagnant-lid mode of 
convection (SL-3D) ; 0 ,  three-dimensional whole-layer mode of convection (WL-3D) ; 0,  two- 
dimensional whole-layer mode of convection (WL-2D rolls) ; m, indicates that both stagnant-lid 
and whole-layer convection occur. The numbers attached to the circles refer to the case numbers 
in table 1. The dashed line and the double solid line show approximate boundaries between the 
convective regimes. -, Critical Rayleigh number R, as a function of r from the linear-stability 
analysis of Stengel et al. (1982). The arrow shows the location of the boundary between regimes 
WL-2D rolls and WL-3D at r = 1 calculated by Schnaubelt & Busse (1989). + , Location of the 
regime boundary between SL-3D and WL-2D on the solid line suggested by Stengel et al. (1982). 

0.02 % ; 300-2000 iterations were necessary to  satisfy this condition. When the 
purpose is to obtain a time-dependent solution, the timestep is taken to be less than 
one-third of the Courant condition. The reliability of the numerical code is verified 
by benchmark tests described in Appendix B. 

3. Results 
The set of calculations discussed here is summarized in table 1 which gives a,, ay ,  

R,, R,, r ,  (dx,Sy,d~),~~, (m,,my,mz), the mode of solution (time marching tm or 
steady state std), the initial conditions (IC),  and the computed values of Nusselt 
number Nu. The numbers under the initial condition column identify the case 
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adopted as the initial state for the calculation. The ‘hyd’ in the initial condition 
column for case 1 refers to the hydrostatic and conductive state 

T = l - z ,  u = o ,  (15) 

and a temperature perturbation T’ of the form 

T’ = 0.01 cos (xzla,) sin ( K X ) .  (16) 

The ‘rnd’ for case 13 in the initial condition column refers to the hydrostatic and 
conductive state (15) together with a temperature perturbation in the form of 
random noise with amplitudes in a range from 0 to 0.01. The ‘hx’ for case 23 in the 
initial condition column refers to the hexagonal pattern shown in figure 14. 

The regime diagram of figure 1 (loglor vs. log,,R,) classifies the convective flow 
patterns obtained in the cases with a, = 1.7 and ay = 0.5 into a steady ‘stagnant-lid 
mode’ (SL) indicated by large solid circles and a steady ‘whole-layer mode’ (WL) 
indicated by small circles. (We have not calculated time-dependent solutions.) The 
solid square in figure 1 indicates that both the whole-layer mode and the stagnant- 
lid mode of convection are obtained. The whole-layer mode of convective solutions 
is further classified into two-dimensional rolls (small open circles) and three- 
dimensional convection (small solid circles). (The stagnant-lid mode of convection 
was always found to be three-dimensional.) Schnaubelt & Busse (1989) showed that 
steady two-dimensional rolls with r = 1 and aspect ratio 1.7 (the aspect ratio adopted 
in our numerical simulations of two-dimensional roll pattern convection, see 3.3 
below) are stable only when R, < 8.1 x lo4. This threshold is shown by an arrow in 
figure 1 .  We also show, by a solid line, the critical Rayleigh number R, as a function 
of r from the linear stability analysis of Stengel, Oliver & Booker (1982). This line 
gives an approximate location of the threshold for the onset of convection ; i t  does 
not show the exact location because (a )  the adopted width of the box is different from 
the critical wavelength and ( b )  the hydrostatic and conduction state is unstable 
against finite-amplitude perturbations a t  a value of R, slightly smaller than R, when 
7 depends strongly on temperature (Busse 1967 ; Stengel et al. 1982). A linear analysis 
of convective instability for the constant viscosity case (e.g. Chandrasekhar 1961) 
and figure 11 of Stengel et al. (1982) suggest, however, that the uncertainty deriving 
from these two reasons is unimportant on the scale of figure 1. 

We draw an approximate regime boundary between the stagnant-lid mode of 
convection (SL-3D) and the whole-layer mode of convection by a double solid line. 
This line is determined from the cross and the solid square shown in figure 1 ; the cross 
indicates the location of the triple junction between the regimes of stagnant-lid 
mode, whole-layer mode and no-convection suggested in the linear-stability analysis 
of Stengel et al. (1982). We neglected a flow regime along the double solid line, in 
which both stagnant-lid and whole-layer convection occur because this regime is 
likely to be narrow on the scale of figure 1 and our data points are not dense enough 
to resolve it. The equation for the regime boundary is 

(17) r = rC1 = 1.18 x lO3R~.”OB. 

We also draw the approximate regime boundary between the three-dimensional 
whole-layer mode of convection (WL-3D) and the two-dimensional whole-layer mode 
of convection (with aspect ratio 1.7, WL-2D Rolls) by a dashed line in figure 1. The 
equation of this boundary is 

r = rc2 = 3.84 x 10sR;1.35. (18) 
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In  the following, we describe the convective Aow patterns obtained in each of these 
regimes. (We have neglected a possible regime of three-dimensional convection a t  R, 
slightly greater than R, in figure 1.  Bolton & Bussc (1985) have shown that 
convection becomes two-dimensional a t  r = 1 and a, = 1.7 when R, is larger than 
about 800, i.e. three-dimensional convection may occur when R, is in a range from 
R, (about 660) to 800 when r = 1.  This range is small on the scale of figure 1. )  

3.1.  Stagnant-lid mode versus whole-layer mode 

Figure 2 shows the structure of convection in case 17 (R, = lo2 and r = 3.2 x lo4, left 
column of figure) and case 16 (R, = lo3 and r = 3.2 x lo3, right column of figure) ; T,, 
and ua, in figure 2 ( g )  are defined by 

and 

where 

and u,,, is the maximum value of u&. In  both equations, the integrations extend 
over the entire horizontal plane a t  height z. The viscosity qav in figure 2(9) is 
calculated from ( 5 )  and T,, and normalized with its value a t  the bottom. Note that 
Rb = 3.2 x lo6 for both cases. 

Figure 2 for r = 3.2 x lo4 shows that a stagnant layer or lid develops in the 
uppermost coldest highly viscous part of the top cold thermal boundary layer when 
viscosity depends strongly on temperature ; the average fluid velocity uav is almost 
0 a t  z > 0.85 (the height indicated by the arrow in figure 29). Isotherms in the 
vertical sections in figure 2 ( e ,  f )  are almost horizontal and T,, depends linearly on z 
(figure 2 9 )  in the stagnant lid, i.e. heat is transferred in the vertical direction only by 
conduction in the lid. Three-dimensional convection occurs beneath the stagnant lid. 
The convection has cylindrical hot uprising plumes and cylindrical cold sinking 
plumes (see figure 2a-d for r = 3.2 x lo4). The temperature contrast between the 
coldest part of the sinking plumes and the hottest part of the uprising plumes in the 
horizontal plane z = 0.5 is about 0.25 (figure 2 d ) ,  much smaller than the temperature 
contrast between the top and bottom boundaries. We define this type of convection 
as the ‘stagnant-lid ’ mode of convection. (Further discussion of the convective flow 
pattern of the stagnant-lid mode of convection will be given below.) 

Figure 2 for r = 3.2 x lo3, in contrast, shows that convection involves all of the 
fluid in the box, including the fluid in the uppermost coldest highly viscous part of 
the top cold thermal boundary layer, when viscosity depends relatively mildly on 
temperature. The average fluid velocity u,, is non-zero (about 0.1) at the top 
boundary z = 1 as denoted by the arrow in figure 2 (9) .  The isotherms in the vertical 
sections in figures 2 ( e )  and 2 ( f )  are significantly distorted from horizontal even just 
beneath the top boundary (note the T = 0.1 isotherm) and the dependence of T,, on 
z deviates significantly from linear in the top thermal boundary layer (figure 2 g ) ,  i.e. 
advection significantly contributes to  heat transport in the vertical direction even 
just beneath the top surface. As a result of the absence of a cold stagnant lid, the 
temperature contrast between the hottest parts of the uprising plumes and the 
coldest parts of sinking plumes is much larger than the corresponding temperature 
contrast for the case of stagnant-lid mode convection ; the temperature contrast in 
the horizontal plane z = 0.5  is about 0.6, comparable to the temperature contrast 
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FIGURE 2 (a, b ) .  For caption see facing page. 

between the top and bottom boundaries (see figure 2 4 .  We define this type of 
convection as the ' whole-layer ' mode of convection. (Further discussion of the flow 
pattern of the whole-layer mode of convection will be given below.) 

To understand the nature of the transition between the stagnant-lid mode and the 
whole-layer mode, we plot the Nusselt number Nu and the horizontally averaged 
fluid velocity a t  the top u,,(x = 1) against loglor at  R, = 3.2 x los in figure 3(a, b ) ,  
respectively. The numbers attached to the data points indicate case numbers. The 
figures show that there is a hysteresis at r = lo4. Case 21 is obtained when the 
stagnant-lid mode of convection calculated in case 17 is used as an initial guess in our 
iterative procedure. In contrast, case 22 is obtained when the whole-layer mode of 
convection calculated in case 12 is used as an initial guess. The hysteresis indicates 
that the transition between stagnant-lid and whole-layer convection is a bifurcation. 

The slopes of the Nu versus r curves shown in figure 3 ( a )  and the flow patterns 
shown in figure 3 ( c )  also demonstrate that the transition between whole-layer and 
stagnant-lid convection is a bifurcation (figure 3c shows isotherms and contour lines 
of constant vertical fluid velocity in the horizontal plane at height 2 = 0.5). The 
Nusselt number Nu depends more strongly on r in the regime of whole-layer 
convection than in the regime of stagnant-lid convection and there is a qualitative 
difference in the flow pattern between the stagnant-lid mode of convection and the 
whole-layer mode of convection. 

The bifurcation provides a physically sound basis for our classification of 
convection into whole-layer and stagnant-lid modes. The stagnant-lid and whole- 
layer modes belong to different branches of convection. The stagnant-lid mode of 
convection occurs when the viscosity ratio r exceeds rcl defined in (17), while the 
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r = 3.2 x 10' r = 3.2 x lo3 

(c) 

Y 

0 

( d )  

Y 

0 X 5.1 0 5. I 

0 

1 
(g) 

z 

0 

7 
5.1 

FIQURE 2. (a), (b) Isothermal surfaces in the areas of rectangles a and b shown in ( c ) .  ( c )  Contours 
of constant vertical velocity on the horizontal plane a t  height z = 0.5. Solid and dashed lines 
indicate upward and downward flow, respectively. Contour interval is 52.5. ( d )  Isotherms in the 
horizontal plane z = 0.5. Contour interval is 0.033. Dashed lines indicate the isotherms T = 0.4 and 
0.8. (e), ( f )  Isotherms in the vertical sections at  y = 0.5 and 1.0 indicated by the dash-dotted lines 
e andfshown in (d). Contour interval is 0.1. For dashed lines, see the caption to (d). (g) Horizontally 
averaged temperature T,, (solid line), horizontally averaged velocity us, (dashed line, see (20)), and 
horizontally averaged viscosity 7, as a function of height z.  The normalization constant u,, in 
(20a) is 230 (left-hand column) and 341 (right-hand column) and yav is normalized with its value 
at the bottom. Parameter values are r = 3.2 x lo4, R, = lo2 (case 17, left-hand column) and T = 
3.2 x lo9, R, = loa (case 16, right-hand column) ; R, = 3.2 x lo8, a, = 1.7, and a, = 0.5 for both 
cases. Actual calculations are made in the region 1.7 < x < 3.4, 0.5 < y < 1.0 and the calculated 
flow patterns are reflected with respect to the sidewalls to obtain figure 2(c-f). 
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- 1  < Whole-layer mode 4 

Stagnant-lid mode 

-3 
3.5 4 4.5 5 

log,, r 
FIGURE 3 (a, 6). For caption see facing page. 

whole-layer mode of convection occurs when r is smaller than rcl as indicated in 
figure 1 .  

We confirmed the reliability of the above calculations by repeating the one at  r = 
3.2 x lo3 with a coarser mesh and with time marching (case 14, table 1). We obtained 
exactly the same structure of convection and a Nusselt number only 1.8% larger 
than the value obtained in the above calculation, as can be seen from table 1.  We also 
confirmed that this solution is truely steady, i.e. it  does not show time-dependence. 
Thus, we conclude that our calculation is reliable. (We also checked the effects of 
initial conditions on the numerical results. A discussion of this check is given below.) 

I n  summary, a stagnant lid develops in the uppermost coldest highly viscous part 
of the top cold thermal boundary layer and convection is confined to  the region 
beneath the stagnant lid only when the viscosity contrast r exceeds rcl. When r is less 
than rcl ,  convection penetrates upward into the highly viscous part of the top cold 
thermal boundary layer. The transition at rcl is a bifurcation. 

3.2. Stagnant-lid convection mode 

Figure 4 shows the convective flow patterns obtained a t  r = 3.2 x lo4 and R, = 10 
and 32 (i.e. in the SL-3D regime of figure 1).  This figure and figure 2 for r = 3.2 x lo4 
show that convection beneath the stagnant lid occurs in a rectangular pattern. The 
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FIQURE 3. (a) Nusselt number Nu vs. log,, r; r is the viscosity ratio across the convecting layer. The 
numbers attached to the points refer to the case numbers in table 1. All cases are calculated at the 
Rayleigh number defined with the viscosity at the bottom R, = 3.2 x 10'. (b) Logarithm of 
horizontally averaged fluid velocity at the top uaV(z = 1) vs. loglor; u,(z) is defined in (20). ( c )  
Isotherms (left-hand column) and contour lines of constant vertical fluid velocity w (right-hand 
column) in the horizontal plane at the height z = 0.5 for the cases shown in (a) and (b). For contour 
intervals and the meaning of dashed lines, see the captions to figure 2(c-d). 

planform of the rectangular three-dimensional convection has hot upwelling 
cylindrical plumes a t  or near the centre of the rectangle, sheets of cold sinking fluid 
along the four sides of the rectangle, and cold sinking cylindrical plume 
concentrations immersed in the sheets. 

To see how the aspect ratios of the box influence the flow pattern of stagnant-lid 
convection, we repeated the calculation a t  R, = 32 and r = 3.2 x lo4 with the aspect 
ratios a, = 3 and uy = 1.5 (case 24). Figure 5 shows the result. Figure 5 ( g )  
demonstrates that in this case convection is of the stagnant-lid type ; fluid velocity is 
almost zero above the level shown by the arrow. Figure 5 ( c - d )  indicates that 
convection in this case occurs in a rectangular pattern. The planform of the 
convection cells is rectangular with a hot upwelling plume at the centre of the 
rectangle, cold downwelling sheets along the four sides, and cold downwelling plume 
concentrations immersed in the sheets. These features are the same as those of the 
flow pattern shown in figure 4 for R, = 32, i.e. the aspect ratios do not influence the 
overall character of the flow pattern. However, figure 4 for R, = 32 and figure 5 show 
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FIGURE 4. Similar to  figure 2 (a-f)  but for R, = 10 (case 20, left-hand column) and R, = 32 (case 19, 
right-hand column) ; r is 3.2 x lo4 for both cases. The contour intervals for (c) are 8.13 (left) and 23.3 
(right). The contour intervals for ( d ) - ( f )  are the same as those of figure 2. 

that the detailed nature of the flow pattern does depend on the aspect ratios. All of 
the convection cells calculated at  a, = 3 and a, = 1.5 have only one hot upwelling 
plume at their centres as shown in figure 5. In  contrast, convection cell A in the 
calculation with a,  = 1.7 and a, = 0.5 (figure 4 d )  has two upwelling plumes near the 
centre of the rectangle and six cold sinking plume concentrations, four a t  the corners 
and two on the sides of the rectangle, while the adjacent cell B has only one hot 
upwelling plume a t  the centre and four cold sinking plume concentrations a t  the 
corners of the rectangle (figure 4 b d ) .  
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3.3. Whole-layer convection mode 
Figure 6 shows the structure of the whole-layer mode of convection a t  the values of 
r indicated in the figure. The Rayleigh number R, is lo3 for all cases. When r = 320, 
the convective flow pattern is a two-dimensional roll (WL-2D, figure 1) characterized 
by hot upwelling sheets around A and B (figure 6 d )  and a cold sinking sheet around 
F .  The axis of the roll is parallel to the y-axis and the aspect ratio of the roll (width 
over depth) is equal to that of the convecting box a, = 1.7. (This aspect ratio was 
always realized in our calculations of two-dimensional roll convection.) We obtained 
two-dimensional roll convection at  r = 3.2 x lo2 and R, = lo3 even when a three- 
dimensional flow pattern was adopted for the initial state as indicated in table 1 and 
figure 1 (case 9). Thus we conclude that three-dimensional convection cannot occur 
in the WL-2D roll regime. (We carried out a similar check of the effect of initial 
conditions at r = 3.2 x lo3 and R, = 32, i.e. case 7. )  

Convection occurs in a three-dimensional bimodal pattern when r 2 lo3. The 
planform of the convection cell is rectangular and both the hottest parts of upwelling 
plumes, which occur at the four corners of the rectangle, and the coldest part of the 
sinking plume, which occurs a t  the centre of the rectangle, are cylindrical. The 
cylindrical concentrations of the plumes become narrower as r increases, i.e. as the 
dependence of viscosity on temperature becomes stronger. The vertical velocities in 
the cylindrical cores of the hot upwelling plumes are much larger than the upwelling 
velocities in the surrounding fluid, while the vertical velocity in the cylindrical core 
of the cold sinking plume is almost the same as the downwelling velocity in the 
surrounding fluid. (Here, ‘surrounding fluid’ means the fluid in the sheet-like 
extensions of the plumes as explained below.) The rather low vertical velocity in the 
cylindrical core of the cold sinking plume is due to the high viscosity in the cold 
downwelling concentration. 

In addition to the cylindrical cores, all of the plumes shown in figure 6 for r 2 lo3 
have sheet-like extensions (see, for instance, the sheet-like extensions indicated by 
‘sh’ in figure 6 b  for r = 5 x lo3 and in figure 6d for r = 3.2 x lo3). The sheet-like 
extensions of a cold sinking plume become narrower and more elongated as r 
increases and become the dominant feature of cold downwelling flow when r 2 3200, 
as can be seen from figure 6 c ;  the local maxima of downwelling velocity occur in the 
sheet-like extensions instead of in the cylindrical cores of cold sinking plumes when 
r 2 3200. At r = 5000, the sheet-like extensions of the cold sinking plumes become so 
well developed that they even drag the hot buoyant fluid around and H downward 
(figure 6 d ) .  The sheet-like extensions of the hot upwelling plumes also become more 
elongated as r increases, but they do not become narrower. 

Sheet-like extensions of plumes are a feature of the bimodal convection of strongly 
temperature-dependent viscosity fluid as can be seen from a comparison of the 
convection patterns in figures 6 and 7 ; the latter figure shows the pattern of three- 
dimensional convection of a constant viscosity fluid at  R, = lo5 (case 1 ) .  In this 
constant viscosity case, convection also occurs in a bimodal pattern, but the plumes 
do not have sheet-like extensions. Both hot upwelling flow and cold downwelling flow 
occur dominantly as cylindrical plumes. (Note the dense circular concentric contour 
lines of constant vertical fluid velocity around the plumes in figure 7c.)  

To see how the aspect ratios of the box influence the flow pattern of the whole- 
layer mode of convection, we repeated the calculation a t  R, = lo3 and r = lo3 with 
the aspect ratios a, = 3 and ay = 1.5 (case 23). Figure 8 shows the results. Figure 8 (8)  
demonstrates that in this case convection is of the whole-layer type ; the horizontally- 
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FIGURE 5.  Similar to figure 2 but for a, = 3, ay = 1.5, R, = 32, and r = 3.2 x lo4. 

averaged fluid velocity u,, defined in (20)  is non-zero (about 0.15) a t  the top 
boundary z = 1 as indicated by the arrow in the figure. Figure 8(c-d) indicates that 
in this case convection occurs in a bimodal pattern. The planform of convection is 
rectangular, with a hot upwelling plume a t  the centre of the cell and cold 
downwelling a t  the four corners of the cell. The plumes have sheet-like extensions. 
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The vertical velocity in the sheet-like extensions of the cold downwelling plumes is 
almost the same as the vertical velocity in the cylindrical cores of the plumes as can 
be seen from figure 8 (c). These features are the same as the ones shown in figure 6 for 
r = lo3, i.e. the aspect ratios of the box do not influence the overall character of the 
flow pattern. However, figure 8 shows that the detailed nature of the flow pattern 
does depend on the aspect ratios. Both hot upwelling plumes and cold downwelling 
plumes are not in a straight line. The locations of hot upwelling plumes deviate 
slightly from the dash-dotted line e in figure 8 ( d )  and the locations of cold 
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FIGURE 6. Similar to figure 2(a-f) but for r = 320 (case 8), lo00 (case lo), 3200 (case 16), and 
5000 (case 15). The value of R, is lo3 for all cases. 

downwelling plumes deviate slightly from the dash-dotted line g. These slight 
misalignments are not observed in the convection pattern of figure 6 for r = lo3. 

To confirm that our conclusion does not depend on assumed initial conditions, we 
made two numerical calculations with different initial conditions at R, = 3.2 x lo3 
and r = 4.7 x lo3. In  one calculation (case 13), a hydrostatic and conductive state 
with random noise in the temperature distribution was assumed as the initial 
condition. We obtained convection cells having aspect ratio 1.7 in the x-direction and 
1 in the y-direction and having the same structure as the one shown in figure 6 for 

I1 FLY 233 
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FIQURE 7. Similar to figure 2(a-f) but for a constant viscosity case a t  R, = lo5 (case 1). 

r = lo3. (This aspect ratio in the x-direction is half of the aspect ratio for the 
convection cell shown in figure 6 at  r = lo3.) In another calculation (case 12), the 
two-dimensional rolls obtained in case 5 (figure 1) were used as the initial condition. 
We obtained convection cells having aspect ratio 3.4 in the x-direction and 1 in the 
y-direction and having the same structure as the one shown in figure 6 for 
r = 3.2 x lo3. I n  both calculations, we obtained whole-layer bimodal convection with 
cylindrical plumes having sheet-like extensions. Thus we conclude that the above 
described convective structures are not a consequence of assumed initial conditions. 
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3.4. Vertical component of vorticity 
Figure 9 shows the horizontally averaged magnitude of the vertical component of 
vorticity w, (solid curve) and the horizontally averaged magnitude of the horizontal 
component of vorticity wh (dashed curve) versus height z for (a)  case 10 ( r  = lo3, 
R, = lo3), ( b )  case 15 (T = 5 x lo3, R, = lo3), and (c) case 17 (T = 3.2 x lo4, R, = lo2). 
Here, w, and wh are defined by 

and 

where the integration extends over the entire horizontal plane at height z. The figure 
shows that wz,  though non-zero, is much smaller than W h  for all cases. The vertical 
component of vorticity, which in the case of mantle convection has a magnitude 
comparable to that of the horizontal component of vorticity a t  the Earth's surface, 
is not significantly excited in a thermally convecting Newtonian fluid with 
temperature-dependent viscosity even when the temperature-dependence is very 
strong. This result is consistent with the conclusion of Christensen & Harder (1991). 

3.5. Ejicienty of heat transport 

Figure 10 (a) shows Nusselt number Nu versus log,, R, for the whole-layer mode of 
convection at  R, = lo5. (Here, we present the results using R, and R, instead of Rt 
and r . )  The values of Nu from cases 1 4  listed in table 1 are used in this plot. The 
figure shows that log,,Nu depends linearly on log,,R, when R, > 100. The large 
deviation from this relationship at R, = 32 (case 6) occurs because this value of R, is 
close to the threshold for convection to occur as can be seen from figure 1 ; the linear 
relationship is expected only when R, is much higher than the critical Rayleigh 
number. By least-squares fitting to the data at R, > 100, we obtain 

NU = 1.05R;.1s2, (23) 

when R, = lo5. 
Figure 10(b) shows Nu versus log,,Rb for the whole-layer mode of convection a t  

R, = lo3. The values of Nu from cases 8, 10, 15 and 16 as well as the value of Nu 
calculated from (23) at R, = lo3 are used in this plot. Again, there is a linear 
relationship between log,, Nu and log,, R,. By least-squares fitting, we obtain 

Nu = 1.5Rt086, (24) 

when R, = lo3. The exponents in (23) and (24) indicate that the dependence of Nu on 
R, (i.e. the viscosity at  the top) is stronger than the dependence of Nu on R, (i.e. the 
viscosity at the bottom) consistent with the two-dimensional results of Christensen 
(1984a). 

Figure 3(a)  shows Nu versus log,,R, for the stagnant-lid mode a t  R, = 3.2 x 10'. 
The points 21, 17 and 18 in the figure indicate that there is a linear relationship 
between log,, Nu and log,, R,. By least-squares fitting we obtain 

Nu = 1.98Rt.'33, (25) 

when 22, = 3.2 x lo6. We have not derived a similar relation between Nu and R, for 
the stagnant-lid mode of convection because we do not have enough data. 

11-2 
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FIGURE 8. Similar to figure 2 but for a, = 3, a, = 1.5, R, = lo3, and r = lo3. 

3.6. Summary 
The uppermost coldest highly viscous part of the top cold thermal boundary layer 
becomes a stagnant lid when the viscosity ratio r > 1.18 x 103R,0.309. Convection 
occurs in a three-dimensional rectangular pattern beneath this stagnant lid. A 
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FIQURE 9. Horizontally averaged magnitude of the vertical vorticity component w, (solid line) and 
the horizontal vorticity component oh (dashed line) versus height z; both oh and o, are normalized 
with the maximum value of w,,, which is (a) 979, (b) 2613, and (c) 2076. Parameter values are (a) 
r = loa, R, = lo3, ( b )  T = 5 x lo3, R, = lo3, and (c) r = 3.2 x lo4, R, = lo*. 

stagnant lid does not develop when r < 1.18 x 103R,0.309 ; convection involves all of the 
fluid in the box including the fluid in the uppermost coldest highly viscous part of the 
top cold thermal boundary layer. This whole-layer mode of convection occurs in a 
three-dimensional bimodal pattern in regime ‘WL-3D’ shown in figure 1. The 
basically cylindrical plumes of this bimodal convection have sheet-like extensions, 
which become more well developed as the dependence of viscosity on temperature 
becomes stronger. The whole-layer mode of convection consists of two-dimensional 
rolls in the regime denoted by WL-2D rolls in figure 1. The transition between the 
whole-layer mode of convection and the stagnant-lid mode of convection is a 
bifurcation. Further detailed calculations are necessary to clarify the nature of this 
bifurcation. The Nusselt number Nu depends on R, more strongly when convection 
occurs in the whole-layer mode than when it occurs in the stagnant-lid mode. The 
Nusselt number Nu for the whole-layer mode of convection depends more strongly on 
R, than on R,. The vertical component of vorticity is only slightly excited by the 
temperature-dependence of viscosity even when the dependence is very strong. 

4. Discussion 
The convective regime diagram of figure 1 may have implications for the tectonic 

evolution of terrestrial planets. The mantles of terrestrial planets have cooled by 
several hundred degrees over geologic time (e.g. Schubert, Cassen & Young 1979). 
Hence, mantle viscosity has increased by orders of magnitude a t  depth owing to the 
strong temperature-dependence of the viscosity of mantle material. The viscosity a t  
the top of the mantle, however, has remained almost constant over geologic time 
because the surface temperature of terrestrial planets has been relatively unchanged. 
Thus, the viscosity contrast in the mantle has decreased by orders of magnitude with 
the age of the planets, while the Rayleigh number defined with respect to the 
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FIGURE 10. (a)  Nu vs. log,, R, for whole-layer mode of convection at R, 
whole-layer mode of convection at R, = los. The value of Nu at R, = 

= lo6. ( b )  Nu 2)s. log,,R, for 
lo6 is calculated from (23). 

viscosity at the top R, has remained nearly constant. Therefore, the evolutionary 
paths of terrestrial planets are almost vertical in the regime diagram of figure 1. 

The evolutionary path of a terrestrial planet may cross into the regime of whole- 
layer convection when R, exceeds R,,, the value of R, for the cross in figure 1. Mantle 
convection would involve the lithosphere in a terrestrial planet with sufficiently large 
R, when the viscosity contrast r becomes sufficiently small owing to the cooling of the 
planet. This is likely t o  be the case for the present Earth. The contrast between the 
effective viscosity of the Earth’s lithosphere and underlying mantle is at most about 
three orders of magnitude (Kaula 1980) and R, based on the effective viscosity of the 
lithosphere is much larger than Rtc. An evolutionary path that places the present 
Earth in the WL-3D regime of figure 1 is consistent with the occurrence of plate 
tectonics on the Earth; plate tectonics may thus be a particular manifestation of 
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FIGURE 11. An illustration of the grid cell used in the present numerical experiments. Temperature, 
pressure, and viscosity are defined at  the grid points a d ,  the x-component of velocity is defined 
at the grid points denoted by crosses, and the y-component of velocity is defined at  the grid points 
represented by solid squares. 

WL-3D mode of convection. Venus may have followed a similar evolutionary path 
and the present Venus may have an even smaller viscosity contrast between its 
lithosphere and underlying mantle than does the Earth (Bindschadler, Schubert & 
Kaula 1990). The high surface temperature of Venus may preclude the expression of 
the involvement of the lithosphere in convection in the form of plate tectonics by 
suppressing the basalt+xlogite transition in the crust and hence by making the crust 
too buoyant to subduct (Anderson 1981). 

The evolutionary path does not cross the regime of whole-layer convection for a 
terrestrial planet with R, smaller than RtC. The path crosses only the regimes of 
stagnant-lid and no-convection. Along this path, mantle convection occurs first 
beneath a stagnant lithosphere and then stops when r becomes sufficiently small 
owing to the cooling of the planet. It is possible that the Moon, Mercury and Mars 
may be following this evolutionary path although it is unlikely that a t  present they 
have crossed into the regime of no-convection. These bodies are smaller than the 
Earth and Venus and may have lithospheres with higher effective viscosities. Hence, 
R, for these bodies is likely to be smaller than i t  is for the Earth and Venus. 

We thank Bryan Travis of Los Alamos National Laboratory for providing us with 
his graphics code and the anonymous reviewers for useful comments. 

Appendix A. Calculation of viscosity 
In  the finite-volume method (Patankar 1980), viscosity is defined a t  the centre of 

a grid cell and fluid velocity is defined on the boundaries between grid cells, as 
illustrated in figure 11. (Here, we explain the numerical method for the two- 
dimensional case for simplicity. Extension to the three-dimensional case is 
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FIGURE 12. Isotherms for two-dimensional convection of a strongly temperature-dependent 
viscosity fluid obtained in a benchmark test of the code. Viscosity depends on temperature as in 
(5) and R, = lo4 and R, = lo'. 

straightforward.) However, we need the values of viscosity a t  the corners of grid cells 
(e.g. point e in figure 1) when we calculate the viscous-drag term in the momentum 
equation. Special care is necessary in calculating this viscosity ve from the values of 
viscosity at the neighbouring grid points by interpolation to avoid numerical 
instability. In the calculation of the x-momentum equation, for example, we 
calculate ye from the following equation (Patankar 1980) 

where 71.2 = 2AY/(8Yl/vd, c + 8Y2/va, b ) .  (A 2) 

Here, vc is the viscosity a t  point i in figure 11 and other quantities are defined in 
figure 11.  Equation (A 1 )  is derived from the requirement that stress should be 
continuous across cell boundaries (Afrid 1990). When vb, for example, is much larger 
than the viscosities at the points a, d and c, vb contributes negligibly to the viscosity 
qe. This is the basic property of the numerical approach that facilitates computation 
with large viscosity contrasts even between adjacent grid cells. 
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Blankenbach 
et al. 

Quantity Present result (1989) 

Nu 10.097 10.066 
vrms 477.0 480.4 
91 17.67 17.53 

43 26.7 26.8 
94 0.523 0.497 
T,, 0.736 0.741 
2, 1 0.0622 0.0623 
T c 2  0.829 0.832 
Zc2 0.821 0.824 

9 2  0.999 1.009 

5, 1015 101 1 
5 2  -4122 - 4098 

53 -804.5 -788.1 
Xt 0.677 0.677 

5 4  391.8 386.4 
xb 0.631 0.631 

TABLE 2. Comparison of the present numerical results with the benchmark standard of 
Blankenbach et al. (1989). For the meaning of the symbols in the first column, see the text. 

Appendix B. Benchmark tests of the numerical code 
In  order to test the validity of our numerical code, we compare our results with 

those of Blankenbach et al. (1989) for the cases of two-dimensional steady convection 
of a fluid with temperature-dependent viscosity in a bottom heated rectangular 
region of aspect ratio 1. Viscosity is assumed to  depend on temperature as in (5 ) .  The 
boundary conditions are (6)-(12) and the Rayleigh numbers are R, = lo4 and R, = 
lo7. The convective flow pattern was forced to be two-dimensional by adopting a 
Hele-Shaw cell geometry for our rectangular box ; the aspect ratios of the box a, and 
ay were assumed to  be 1 and 0.1, respectively. (We also carried out the numerical 
simulation with a, = 0.1 and ay = 1.0.) The number of mesh points was 68(x- 
direction) x 2( y- direction) x 68(2- direction) and the minimum mesh size was 

Figure 12 shows our calculated isotherms in the vertical plane y = 0.05. The single- 
cell, roll-like, counterclockwise convective circulation has thermal boundary layers 
a t  the top and bottom surfaces, plumes along the vertical sidewalls and an essentially 
isothermal core. The bottom thermal boundary layer is much thinner than the 
boundary layer a t  the top of the box. We calculated ( a )  Nusselt number Nu, ( b )  root- 
mean-square velocity defined by ~ 

aXmin = dYmin = 4.8 x 10-3. 

where the volume integration extends over the entire box, (c )  vertical temperature 
gradient at the four corners of the rectangle qd (i = 1 4 ,  figure 12), (d )  the height z, 
and the value T, of the extremum of the temperature along the centre line x = t 
(dashed line L in figure 12), ( e )  topography of the top and bottom free surfaces a t  the 
four corners of the box & measured in units of (m), and (f) the positions (x-coordinate) 
of the zero-crossings of the topography on the top and bottom free surfaces, xt and 
x,,, respectively. 
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Case a1 a2 a3 a4 a5 a6 a7 

Rt 2410 
r* 11 
*,In, 55.6 
Nu (present) 1.73 
Nu (BF) 1.69 
Flow pattern 
Initial R, 
Final R 
BF sSQ 

sR 

2400 
11 
55.6 

1.71 
1.67 

2000 1700 
11 11 
32.8 17.3 
1.51 1.33 
1.48 1.30 

ST SQ, 
SQ SQ 
sSQ SSQ 
uR uR 

3000 3000 1800 
4.5 6.0 11 

74.5 76.5 - 
1.85 1.86 - 

- 1.36 - 

TABLE 3. Comparison of present numerical results with those of the weakly nonlinear analysis of 
Busse & Frick (1985) (denoted as BF) for three-dimensional convection of a mildly temperature- 
dependent viscosity fluid. The symbols ST, SQ and R mean static, square pattern convection, and 
roll pattern convection, respectively, and u and s in the last few rows mean unstable and stable 
respectively. The initial flow pattern of SQ, means the square pattern obtained in case a3. A time 
marching calculation was carried out in case a7. The (uR) for case a7 means roll pattern convection 
was found to be unstable but a final steady-state solution was not obtained in this calculation. 

1000 2000 
R, 

FIGURE 13. The relationship between root mean square velocity v,,, and Rayleigh number R, for 
square pattern convection at r* = 11. The data from cases a2, a3, and a4 in table 3 are plotted. 

In addition to the summary of our results, table 2 includes results from the 
benchmark standard of Blankenbach et al. (1989). The agreement is satisfactory 
except perhaps for q4, and t4. The relative lack of agreement for these quantities 
occurs because the bottom thermal boundary layer is very thin, as can be seen from 
figure 12. A finer mesh is necessary to calculate these quantities more accurately. On 
the basis of table 2, we conclude that our numerical code accurately handles two- 
dimensional convection of strongly temperature-dependent viscosity fluid. 

Next, we have carried out numerical simulations of the thermal convection of a 
mildly temperature-dependent viscosity fluid in a three-dimensional rectangular box 
and compared our results with those of a weakly nonlinear analysis by Busse & Frick 
(1985). The aspect ratios of the rectangular box are assumed to be a, = ay = 1.0134. 
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FIGURE 14. Contours of (a)  constant vertical velocity and ( b )  isotherms in the horizontal plane 
z = 0.5 for hexagonal convection of a constant viscosity fluid in a box with aspect ratios a, = 3 and 
uy = 1.5. For the meaning of the dashed lines, see the caption to figure 2. Contour intervals are (a) 
84 and ( b )  0.125. 

The problem involves the convection of fluid whose (non-dimensional) viscosity 
depends on temperature as 

7 = 1 +2(1 - r * )  (T-0.5)/(1 + r * ) ,  (B 2) 

where r* is the ratio of viscosity a t  the top, where T = 0, to the viscosity a t  the 
bottom, where T = 1. The reference dimensional viscosity l;lo in (4) is taken to  be the 
viscosity a t  T = 0.5. 

The assumed boundary conditions are (6)-(10) and zero fluid velocity a t  the top 
and bottom surfaces, i.e. 

(B 3) u = O  a t z = 0 , 1 .  

The non-uniform mesh has 14 x 14 x 14 mesh points. The minimum mesh size is 
axmin = 6ymin = 6zmin = 0.061, while the maximum mesh size is 8zmax = &ymax = 
6zmaX = 0.09. The results of our calculation, carried out for different values of R, (the 
Rayleigh number), r* (viscosity ratio) and initial flow pattern are presented in table 
3. The table gives the flow patterns, root-mean-square velocity vrms, and Nusselt 
number Nu for the final steady solution. The table also contains values of Nu 
obtained by Busse & Frick (1985). As can be seen from table 3, our values of Nu are 
consistent with the values of Nu obtained by Busse & Frick (1985). 

Predictions of convective flow pattern according to the nonlinear stability analysis 
of Busse & Frick (1985) (see figure 6 of their paper) are summarized in the last two 
rows of table 3. For example, for case a5 in the table, Busse & Frick (1985) showed 
that square pattern convection is unstable while roll pattern convection is stable. 
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This result is consistent with our computation of case a5 which started with square 
pattern convection and ended with roll pattern convection. As can be seen from table 
3, all the convective flow patterns obtained in our numerical simulations are 
consistent with the predictions of Busse & Frick (1985). (A time marching calculation 
was carried out for case a7. We did not obtain a final steady-state solution for this 
case since the growth rate of the instability was so small (about 0.065) that too many 
timesteps were required. We did, however, show that roll pattern convection is 
unstable as denoted in table 3.) 

To see if our numerical code correctly reproduces the value of the critical Rayleigh 
number R,, we plot in figure 13 root-mean-square velocity vrmS against Rayleigh 
number R, for the case of square pattern convection at  r* = 11.  As can be seen from 
figure 13, there is a linear relationship between R, and vrms. By least-squares fitting, 
we find that w,,, becomes zero at R, = 1391 f 19; thus we infer that R, = 1391. This 
value of R, is close to 1390, the value obtained in the linear stability analysis of Busse 
& Frick (1985). 

Finally, we carried out a numerical simulation of convection of a constant 
viscosity fluid in a box of aspect ratios a, = 3 and ay = 1.5 a t  R, = lo5 and compared 
our results with those of Travis, Olson & Schubert (1990~).  Assumed boundary 
conditions are (6)-( 12). Figure 14 shows the planform of the convection we obtained. 
The planform is hexagonal with a hot upwelling plume a t  the centre of the hexagon 
and sheets of cold sinking fluid along the sides of the hexagon. This planform is the 
same as the one obtained by Travis et al. (1990~).  The Nusselt number we obtained 
is 9.41, only 2% smaller than the value (9.58) found by Travis et al. (1990~).  Thus 
we conclude that our result is consistent with the computation of Travis et al. 
(1990a). 
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